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Abstract
Background  Ethinylestradiol/levonorgestrel is a widely used contraceptive combination with various formulations 
and administration regimens. There is a hypothesis that the subchronic use of oral contraceptives containing EE and 
LNG will alter the blood profile by modifying cytokine signaling pathways and increasing oxidative stress levels, 
potentially contributing to systemic inflammation. The study aimed to investigate the subchronic effects of EE and 
LNG on hematological parameters, immune function, and oxidative stress in Wistar rats.

Methods Forty adolescent Wistar rats were divided into four groups (n = 10). The control (Group A) received only 
distilled water for 21 days. Groups B, C, and D were administered combined oral contraceptives (COC) containing EE 
and LNG at doses of 0.03 mg/kg and 0.15 mg/kg, respectively, for durations of 7, 14, and 21 days. Blood samples were 
analyzed using an autohematology analyzer, while plasma was used to determine the levels of SOD, MDA, and IL-1β. 
Results EE/LNG exposure (21 days) significantly increased oxidative stress, as evidenced by elevated MDA levels 
and reduced SOD activity. Furthermore, interleukin-1β levels remained unchanged across all groups. Lastly, transient 
changes in RBC count, Hb, PCV, and WBC levels were observed, particularly in group B; however, these changes 
were not sustained or statistically significant, except for PCV recovery.
Conclusion While EE/LNG increases oxidative stress with prolonged use, it shows limited effects on cytokine 
signaling and blood profiles at the tested durations. Further research is needed to explore broader inflammatory 
markers and long-term effects. 
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1 Introduction
Oral contraceptives (OCs) are widely used for birth 
control and have been studied extensively for their 
effects on reproductive health. However, beyond their 
primary role in regulating fertility, OCs influence 
various physiological processes.[1] Recent research 
has highlighted their impact on blood profile, immune 
system signaling, and oxidative stress, raising questions 
about their broader effects on women’s health.[2,3] These 
effects are particularly relevant given the widespread and 
long-term use of OCs. Understanding these influences 
is critical for clinicians to better advise patients and 
manage potential risks. Studies indicate that OCs can 
influence blood coagulation factors and hematological 
profiles.[4] Tekle et al.[3] emphasized the importance 
of monitoring hematological indices in users of oral 
contraceptives, suggesting that these medications can 
alter blood profiles. The question that requires an answer 
is what is the impact of different formulations of OCs on 
hematological parameters such as red blood cell count 
(RBC), hemoglobin (Hb) levels, and platelet counts in 
Wistar rats? Hematological profiles are measurable blood 
indices used to detect and monitor various pathological 
and physiological abnormalities. The use of OCs is a 
significant factor that can impact hematological test 
results and holds critical importance.[3] 
In addition to altering blood profile, OCs have been shown 
to modulate cytokine signaling, a crucial component of 
the immune system.[5] Cytokines are small proteins that 
mediate inflammation and immune responses. Studies 
suggest that OCs can both suppress and enhance the 
production of specific cytokines, affecting inflammatory 
pathways.[6] This modulation could influence 
susceptibility to infections and autoimmune conditions, 
making it important to understand how long-term 
contraceptive use alters immune function. The effects 
of hormonal contraceptives on immune parameters, 
including white blood cell counts (WBC), have been less 
explored. Osman and Al-Mutairi[7] found no significant 
changes in WBC among contraceptive users, indicating 
a potential area for further research into how hormonal 
changes might influence immune function. 
Oxidative stress, a state in which the balance between 
free radicals and antioxidants is disrupted, is another area 
affected by OCs[2,8]. Hormonal fluctuations caused by 
OC use have been associated with increased oxidative 
stress, potentially leading to cellular damage and ageing.
[8] The relationship between OCs and oxidative stress is 
complex, with some studies indicating that OCs may 
decrease antioxidant levels, while others suggest a 
protective role through estrogen’s antioxidant properties. 
Investigating this dual role is vital for understanding the 
long-term health effects of OCs and developing strategies 
to mitigate any adverse outcomes. 

Ethinylestradiol (EE)/levonorgestrel (LNG) is a 
widely used contraceptive combination with various 
formulations and administration regimens. Continuous 
daily administration of this combination has shown 
high contraceptive efficacy. Both compounds are rapidly 
absorbed, with peak serum concentrations reached 
within 1-2 hours after administration.[9] Pharmacokinetic 
parameters show dose-dependent variations and 
pronounced interindividual differences.[10] Research 
suggests that OCs containing EE can increase oxidative 
stress.[11] Studies have shown that OCs containing EE and 
LNG may affect blood coagulation, with studies showing 
a significant shortening of whole blood clotting time after 
3-6 cycles of use.[12]

The hypothesis is that the subchronic use of OCs 
containing EE and LNG will alter the blood profile by 
modifying cytokine signaling pathways and increasing 
oxidative stress levels, potentially contributing to 
systemic inflammation. This study aims to investigate 
the subchronic effects of EE and LNG on hematological 
parameters, immune function, and oxidative stress in 
Wistar rats.

2 Methods

Animals
Forty adolescent Wistar rats, averaging 144 g in weight, 
were obtained from Temilola Animal Husbandry in 
Osogbo, Osun State, Nigeria. The rats were acclimated 
for 14 days under a 12-hour light/dark cycle at a 
temperature of approximately 29°C in the animal 
housing facility of the Faculty of Basic Medical Sciences, 
Adeleke University, Ede. They were provided with 
food and water ad libitum. The animals were cared for 
in compliance with the guidelines for the care and use 
of laboratory animals in biomedical research.[13,14] The 
study’s experimental protocols received approval from 
the Adeleke University Ethical and Review Committee, 
under the approval number AUERC/1257.

Animal Grouping, Drug Preparation, and Administra-
tion Protocol
EE (0.03 mg) and LNG (0.15 mg) tablets (Levofem; 
manufactured by PT. Harsen Laboratories, Indonesia, 
and purchased from DKT Nigeria) were used. Forty rats 
were divided into four groups of 10. Group A served 
as the control and received only distilled water for 21 
days. Groups B, C, and D were administered combined 
OCs containing EE and LNG at doses of 0.03 mg/kg 
and 0.15 mg/kg body weight, respectively, for durations 
of 7, 14, and 21 days. To ensure precise dosing, all rats 
were individually weighed using a digital weighing scale 
at the start of the experiment and weekly thereafter. 
The doses of EE (0.03 mg/kg) and LNG (0.15 mg/kg) 
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were calculated based on each rat’s body weight. The 
combined OC tablets (Levofem, containing EE 0.03 mg 
and LNG 0.15 mg per tablet) were prepared by crushing 
the tablets and dissolving them in distilled water to 
achieve a stock solution concentration of 1 mg/mL for 
both active ingredients. The solution was then diluted to 
achieve the required concentrations for administration. 
For each rat, the appropriate volume of the prepared 
solution was calculated to deliver the target doses (e.g., a 
rat weighing 200 g would receive 0.2 mL of the solution 
for the required dose of 0.03 mg/kg and 0.15 mg/kg, 
respectively). A calibrated micropipette was used for 
precise volume measurement, ensuring accurate dosing. 
The doses administered are based on a pilot study done 
earlier by the authors.

Collection and Analysis of Blood
At the end of the administration period, the rats were 
anesthetized via intraperitoneal injection of ketamine 
hydroxide (50 mg/0.2 mL). Hematologic parameters, 
including RBC, WBC, Hb, platelets (PLT), and packed 
cell volume (PCV), were subsequently analyzed using an 
auto hematology analyzer (Seattle, USA). 

Biochemical Assay
To analyze malondialdehyde (MDA), superoxide 
dismutase (SOD), and interleukin-1 beta (IL-1β) in rat 
blood samples, plasma was collected and stored at -80°C 
to prevent degradation. MDA, a marker of oxidative 
stress, was assessed using the thiobarbituric acid 
reactive substances (TBARS) assay.[15] The absorbance 
of the resulting complex was measured at 532 nm. SOD 
activity, indicative of antioxidant defense, was measured 
via colorimetric assays.[16] The absorbance of the 
resulting complex was measured at 450 nm. IL-1β, a pro-
inflammatory cytokine, was quantified using ELISA.[17] 
The absorbance of the resulting complex was measured 
at 450 nm. 

Statistical Analysis
Statistical analyses were conducted using GraphPad 
Prism 9 for Windows. Differences among groups were 
evaluated through one-way ANOVA followed by 
Tukey’s post hoc test for all measured parameters. Data 
are presented as the mean ± standard deviation (SD), 
with n indicating the number of animals per experimental 
group. A significance threshold of p < 0.05 was applied.

3  Results

Comparison of Average Oxidative Stress Marker 
Levels across the Different Experimental Groups

Figure 1 shows that the MDA level in the EE/LNG 21 
group (0.75 ± 0.11 µM/mg) was significantly increased (p 

< 0.05) compared to the control group (0.55 ± 0.071 µM/
mg). However, no significant differences were observed 
in MDA levels when comparing the control group with 
the EE/LNG 7 and EE/LNG 14 groups (p > 0.05). As 
shown in Figure 2, the SOD level was significantly 
decreased in the EE/LNG 21 group (0.27 ± 0.1 µM/mg) 
compared to the control group (0.63 ± 0.15 µM/mg) (p 
< 0.05). No significant differences in SOD levels were 
observed among the control, EE/LNG 7, and EE/LNG 14 
groups (p > 0.05).

Comparison of Mean Cytokine Levels across the 
Different Experimental Groupss
Figure 3 shows that the IL-1β levels did not differ 
significantly among the control (126 ± 7.3 pg/mL), EE/
LNG 7 (133 ± 25 pg/mL), EE/LNG 14 (126 ± 33 pg/mL), 
and EE/LNG 21 (140 ± 23 pg/mL) groups (p > 0.05).

Comparison of Hematologic Parameters
Comparison of mean values of hematologic parameters 
in various groups of the experiment is shown in Table 1. 
The RBC count in the experiment demonstrates varying 
results across the different groups.

Figure 1 Malondialdehyde (MDA) level.  Control = Control 
group; EE/LNG 7= Ethinylestradiol and Levonorgestrel 7 days 
administration; EE/LNG 14= Ethinylestradiol and Levonorge-
strel 14 days administration; EE/LNG 21 = Ethinylestradiol 
and Levonorgestrel 21. Data expressed as mean ±SD (n = 10). a 
significant difference (p < 0.05) between the EE/LNG 21 group 
compared to the control group

Figure 2 Superoxide dismutase (SOD) level. Control= Control 
group; EE/LNG 7= Ethinylestradiol and Levonorgestrel 7 days 
administration; EE/LNG 14 = Ethinylestradiol and Levonorge-
strel 14 days administration; EE/LNG 21 = Ethinylestradiol 
and Levonorgestrel 21. Data expressed as mean ± SD (n = 10). 
*P value < 0.05 between the EE/LNG 21 group compared with 
the control group
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The control group shows an RBC count of 2.8 ± 0.55 
(×106/𝜇𝑙), which is consistent (p > 0.05) with the EE/LNG 
14 group (2.8 ± 0.35 ×106/𝜇𝑙) and EE/LNG 21 group (2.8 
± 0.62×106/𝜇𝑙). However, the EE/LNG 7 group exhibits a 
slightly lower (p > 0.05) RBC count (2.2 ± 0.28×106/𝜇𝑙), 
suggesting a potential transient reduction in RBC levels 
during this phase. The WBC count is slightly elevated 
(p > 0.05) in the EE/LNG 7 group (8.7 ± 0.92×109/L) 
compared to the control (7.3 ± 0.83 ×109/L). By days 14 
and 21, the WBC levels (7.6 ± 0.46 ×109/L and 7.2 ± 
0.78×109/L) return closer to control values.
Furthermore, in Table 1, Hb levels are slightly reduced (p 
> 0.05) in the EE/LNG 7 group (7.0 ± 0.97 g/dl) compared 
to the control (7.8 ± 0.84 g/dl). By day 14 (7.9 ± 0.81 g/
dl), Hb levels recovered, though a modest reduction (p > 
0.05) was observed again by day 21 (7.3 ± 0.17 g/dl). A 
notable reduction in PCV was observed in the EE/LNG 7 
group (30 ± 4.2 %) compared to the control (39 ± 6.8%). 
By day 14 (43 ± 6.7%), significant (p < 0.05) recovery is 
seen, which remains stable through day 21 (41 ± 7.1%). 
Platelet levels in the EE/LNG 7 group (3.1 ± 0.53×109/L) 
are slightly lower (p > 0.05) than those in the control (3.6 
± 0.19×109/L). By day 14 (3.7 ± 0.13×109/L), levels are 
slightly elevated (p > 0.05) before stabilising by day 21 
(3.5 ± 0.57×109/L3). 

4  Discussion

Oxidative stress, characterized by an imbalance 
between reactive oxygen species (ROS) production 
and detoxification, significantly impacts blood cells, 
particularly RBCs.[18,19] It is associated with various 
diseases, includig diabetes, cancer, and neurodegenerative 
disorders.[20] RBCs are uniquely vulnerable to oxidative 
damage due to their high oxygen-carrying capacity and 
lack of nucleus and mitochondria.[21] Oxidative stress in 
blood cells can be induced by various factors, including 
extracorporeal procedures like apheresis, which increases 
ROS production and phosphatidylserine externalization 
while decreasing reduced glutathione levels.[22] These 
changes can lead to cellular abnormalities, hemolysis, 
and platelet hyperactivation. Biomarkers of oxidative 
stress in RBCs, such as alterations in redox balance, are 
widely used for early diagnosis of various pathological 
conditions.[21] 

Oxidative stress profoundly affects blood cells, 
compromising their functionality, survival, and overall 
health. In RBCs, it causes hemolysis by damaging 
cell membranes, oxidizes Hb to form ineffective 
methemoglobin, and shortens their lifespan, impairing 
oxygen delivery. In WBC, excessive oxidative stress 
disrupts immune responses, induces apoptosis, and 
promotes chronic inflammation, which can contribute 
to immunodeficiency and inflammatory diseases.[23] 
PLTs are also affected, with oxidative stress triggering 
premature activation and aggregation, thereby increasing 
the risk of thrombosis and cardiovascular issues, while 
altering their ability to adhere and aggregate, which 
in turn affects hemostasis and wound healing.[24] This 
study reveals that EE/LNG treatment induces a transient 
impact on hematologic parameters, likely linked to 
oxidative stress. In the EE/LNG 7 group, reductions in 
RBC count, Hb levels, and PCV indicate early oxidative 
stress that impairs erythropoiesis or increases hemolysis, 
with recovery evident by day 14 and stabilization by 
day 21. A transient increase in WBC count points to 
an early inflammatory response, which resolves over 
time[25] Platelet levels also show a temporary reduction, 

Figure 3 Interleukin- 1β (IL-1β) level.  Control = Control 
group; EE/LNG 7 = Ethinylestradiol and Levonorgestrel 7 
days administration; EE/LNG 14 = Ethinylestradiol and Levo-
norgestrel 14 days administration; EE/LNG 21 = Ethinylestra-
diol and Levonorgestrel 21. Data expressed as mean ±SD (n 
= 10). P value > 0.05 between experimental groups compared 
with the control group.

Parameters Control group EE/LNG 7 group EE/LNG 14 group EE/LNG 21 group

RBC (×106/µl) 2.8 ± 0.55 2.2 ± 0.28 2.8 ± 0.35 2.8 ± 0.62

WBC (× 109/L) 7.3 ± 0.83 8.7 ± 0.92 7.6 ± 0.46 7.2 ± 0.78

Hb (g/dl) 7.8 ± 0.84 7.0 ± 0.97 7.9 ± 0.81 7.3 ± 0.17

PCV (%) 39 ± 6.8 30 ± 4.2 43 ± 6.7b 41 ± 7.1

PLT (× 109/L) 3.6 ± 0.19 3.1 ± 0.53 3.7 ± 0.13 3.5 ± 0.57

Data are represented as mean ± standard deviation (n = 10).
RBC: red blood cell, WBC: white blood cell; Hb: hemoglobin, PCV: packed cell volume, PLT: platelets, Control = Control group; EE/LNG 7 = Ethinylestradiol and 
Levonorgestrel 7 days administration; EE/LNG 14 = Ethinylestradiol and Levonorgestrel 14 days administration; EE/LNG 21 = Ethinylestradiol and Levonorgestrel 21. 
b significant difference (p < 0.05) between the EE/LNG 14 group compared with the EE/LNG 14 group

Table 1 Comparison of mean hematologic parameters among the various experimental groups
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followed by stabilization and slight elevation by day 14, 
indicating initial oxidative effects on thrombopoiesis 
with subsequent recovery. These findings suggest an 
adaptive physiological response to mitigate oxidative 
damage over time.[26-28]

These research findings reveal several significant insights 
into oxidative stress marker levels across different 
experimental groups. The MDA level, a marker of lipid 
peroxidation and oxidative stress,[29, 30] was significantly 
elevated in the EE/LNG 21 group compared to the 
control group. This suggests that prolonged exposure 
(21 days) to EE/LNG may increase oxidative stress.[31] 
No significant changes in MDA levels were observed 
between the control group and the EE/LNG 7 or EE/
LNG 14 groups, indicating that shorter durations of 
exposure (7 or 14 days) may not significantly impact 
lipid peroxidation.[32] Furthermore, the SOD level, a key 
antioxidant enzyme, was significantly reduced in the 
EE/LNG 21 group compared to the control group. This 
indicates a potential depletion of the antioxidant defence 
system after prolonged exposure (21 days) to EE/LNG. 
Similar to the MDA results, no significant differences in 
SOD levels were observed among the control, EE/LNG 7, 
and EE/LNG 14 groups, suggesting that shorter durations 
of exposure do not significantly alter antioxidant enzyme 
activity. The findings of oxidative markers in this study 
collectively suggest that prolonged exposure (21 days) to 
EE/LNG leads to increased oxidative stress, as evidenced 
by higher MDA levels and reduced SOD activity. The 
lack of significant changes in both markers in the EE/
LNG 7 and EE/LNG 14 groups suggests a potential 
threshold or time-dependent effect, where oxidative 
stress only becomes evident after a certain duration of 
exposure.[33,34] These results underscore the importance 
of duration in evaluating the oxidative effects of EE/LNG 
and suggest a potential risk of oxidative imbalance with 
prolonged use.
IL-1β is a potent proinflammatory cytokine crucial for 
innate immunity and host responses to pathogens and 
tissue injury.[35] While essential for immune activation, 
elevated IL-1β levels are associated with various 
diseases.[36] The complex mechanisms of IL-1β release 
are not fully understood, but its secretion is thought to 
occur on a continuum depending on stimulus strength and 
extracellular requirements.[35] These research findings 
indicate that exposure to EE/LNG, irrespective of the 
duration (7, 14, or 21 days), does not significantly affect 
IL-1β levels. The lack of significant differences in IL-
1β levels across all groups suggests that exposure to EE/
LNG does not induce measurable changes in this specific 
pro-inflammatory cytokine. This finding indicates that 
EE/LNG exposure, at the tested durations, may not 
provoke an inflammatory response mediated by IL-1β.
 

5 Conclusion

The hypothesis that subchronic use of EE/LNG alters 
blood profiles, modifies cytokine signaling pathways, 
and increases oxidative stress is partially supported by 
the findings. Prolonged EE/LNG exposure (21 days) 
significantly increased oxidative stress, as evidenced 
by elevated MDA levels and reduced SOD activity. 
Secondly, interleukin-1β levels remained unchanged 
across all groups, indicating no significant impact on 
this cytokine pathway or systemic inflammation. Lastly, 
minor, transient changes in RBC count, Hb, PCV, and 
WBC levels were observed, particularly in the EE/LNG 
7 group; however, these changes were not sustained or 
statistically significant, except for PCV recovery. Further 
research is needed to explore broader inflammatory 
markers and long-term effects.
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